Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1025520130550010041
Journal of Animal Science and Technology
2013 Volume.55 No. 1 p.41 ~ p.49
Effects of Yeast Culture Supplementation on Rice Straw Digestibility and Cellulolytic Bacterial Community in the Rumen
Sung Ha-Guyn

Abstract
In vitro and in situ incubation studies were conducted to determine effects of yeast culture supplements (Saccharomyces cerevisiae) on cellulolytic bacterial function and fiber digestion in rice straw. In vitro dry matter digestibility of rice straw gradually increased according to supplemental levels of yeast culture (0.0, 0.2, 0.4, 0.6, 0.8 and 1.0%). Digestibility of rice straw started to increase apparently when yeast culture was added more than 0.6% level (p<0.05). Also, we reconfirmed that in vitro dry matter digestibility was significantly increased by 0.6% of yeast culture addition in 4% NaOH treated and non-treated rice straws (p<0.05). When in situ dry matter digestibility was tested in Korean native goats fed basal diet or experimental diet which contained 1.0% of yeast culture, the yeast culture feeding improved in situ dry matter digestibility in both 4% NaOH treated and non-treated rice straws (p<0.05). In case of real-time PCR monitoring cellulolytic bacterial function, the bacterial population attached on rice straw showed the increasing trends with higher level of yeast culture spraying on rice straw. F. succinogenes and R. flavefaciens were significantly increased in accordance to spraying levels of yeast culture (0.0, 0.1 and 0.3%) at both 12 and 24 hrs of in situ incubation (p<0.05). R. albus was significantly higher population in yeast culture spraying than non-soraying at 12 hrs of in situ incubation (p<0.05). These bacterial populations were showed the increasing trends with digestibility enhancement of rice straw according to the higher levels of yeast culture supplement. Overall, these results clearly suggest that the presence of yeast culture result in noticeable increase of rice straw digestion, which is modulated via good effect on cellulolytic bacterial attachment to fiber substrates.
KEYWORD
Rice straw digestion, Saccharomyces cerevisiae, F. succinogenes, R. flavefaciens, R. albus
FullTexts / Linksout information
Listed journal information